力扬小型可程式控制器 LIYAN PROGRAMMABLE LOGIC CONTROLLER

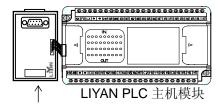
LYPLC

计算机連線

使用说明书

USER'S MANUAL

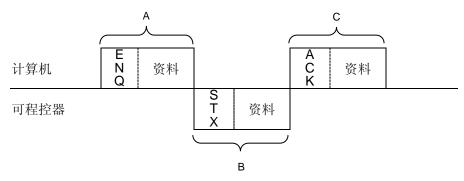
计算机联机


此说明书所包含的内容、图表及说明将会引导读者对于计算机联机正确的操作。此说明使用于联机 EX 可程控器及计算机专用通讯协议的详细说明的细节与秩序。

适用的可程控器: Ex1s, Ex1n, Ex2n 系列可程控器

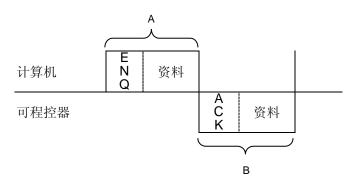
使用此通讯协议时,请先设定 D8120 及 D8121 的内容

<硬件配置> 此通讯协议只适用于第二通讯端口



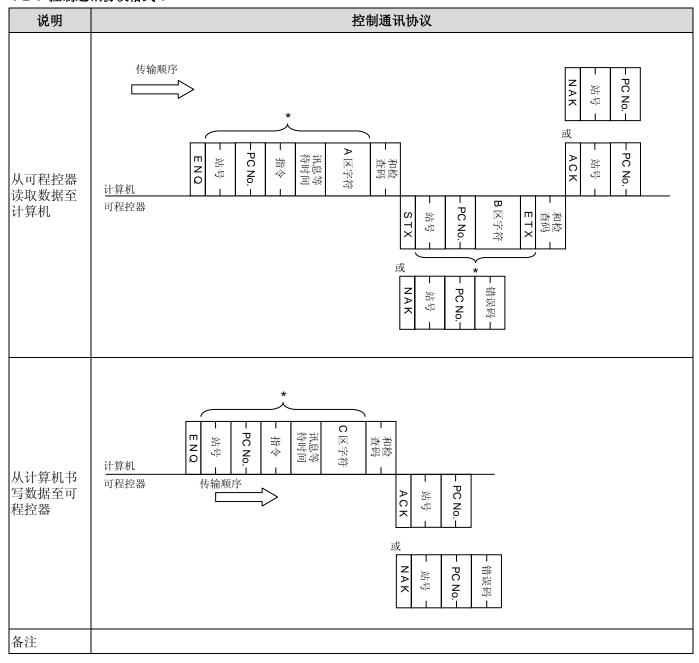
EX232BD/EX485BD/EX232ADP

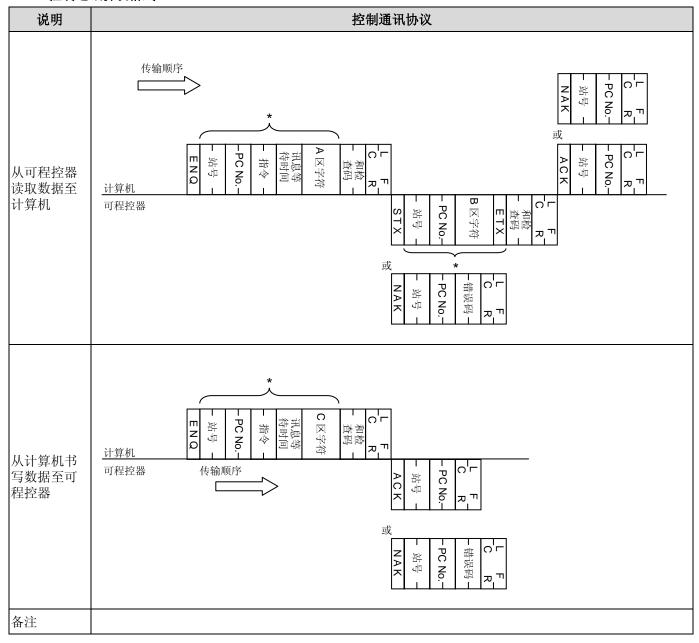
1-1 如何读取一个控制通讯协议图表


1) 当计算机从可程控器读取数据时

(计算机 ← 可程控器)

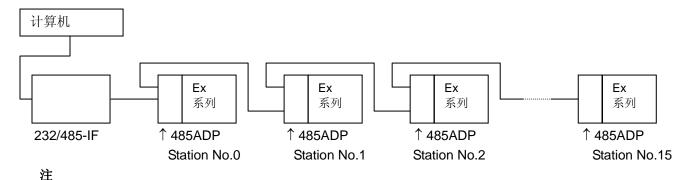
- a) A及C区象征传输从计算机至可程控器。(C区可省略)
- b) B区表示传输从可程控器至计算机。
- 2) 当从计算机书写数据入可程控器时


(计算机 → 可程控器)


- a) A 区象征传输从计算机至可程控器。
- b) B区表示传输从可程控器至计算机。

1-2 控制通讯协议格式

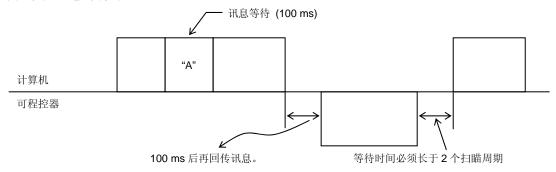
1-2-1 控制通讯协议格式 1


1-2-2 控制通讯协议格式 4

1-3 控制通讯协议

1-3-1 站号

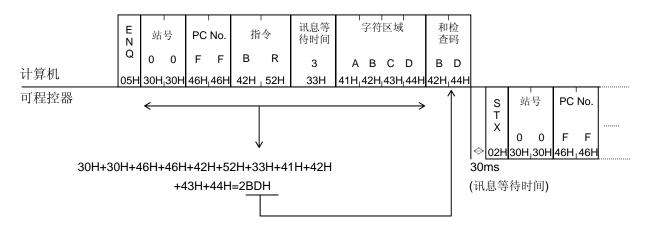
此站号为在可程控器为了决定计算机存取的可程控器所提供的号码。在 EX 系列可程控器中, 站号藉由特殊数据缓存器 D8121 设定。485ADP 连接至可程控器第 2 通讯端口。



- 1) 当设定站号时,不要设定相同号码。否则传输数据可能错误。
- 2) 站号不须依数字顺序,但须设定在指定范围(00H to 1FH)之内。

1-3-2 讯息等待时间

此延迟时间为计算机于传送及接收完毕,所须的状态转换时间。 讯息等待时间可设定在 0 至 150 ms之间。设定此值使用一单个ASCII字符 ("0 至"F")表示 0_H至F_H (0 至 15).


范例: 设定讯息等待时间

1-3-3 和检查码

和检查码用于检证讯息中的数据有没有被噪声干扰而篡改。

范例: 当传输站号 0, PC 号码 FF, 指令 BR (要素记忆批次读取), 讯息等待时间 30 ms, 且数据 ABCD 在格式 1 中, 和检查码计算如下,

1-4 逾时检查时间

逾时检查时间为从计算机(主站)至可程控器(副站),所设定的时间内,若副站未回传讯息,可决定再重传新讯息。

例:设定逾时检查时间为 60 ms:

1-5 组件规格范围

以下为组件及组件号码范围可于组件记忆的存取中使用。

每一组件由5个字符组成。

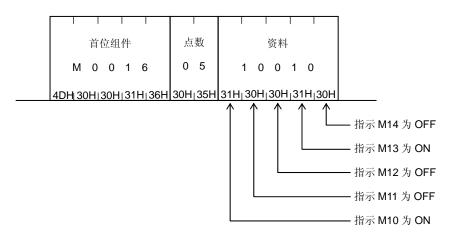
1) 位组件

组件		Ex1s	Ex1n, Ex2n	表示方式	
输入	(X)	X000~X017	X000~X177	o 計集	
输出	(Y)	Y000~Y017	Y000~Y177	8 进制	
辅助继电器	(M)	M0000~M1535	M0000~M1535		
状态	(S)	S0000~S0999	S0000~S0999		
特殊辅助继电器	(M)	M8000~M8255	M8000~M8255	10 进制	
定时器接点	(T)	TS000~TS255	TS000~TS255		
计数器接点	(C)	CS000~CS255	CS000~CS255		

2) 字符组件

组件		Ex1s, Ex1n, Ex2n	表示方式
定时器现在值	(T)	TN000~TN255	
计数器现在值	(C)	CN000~CN255	40 建烛
数据缓存器	(D)	D0000~D3999	10 进制
特殊数据缓存器	(D)	D8000~D8255	

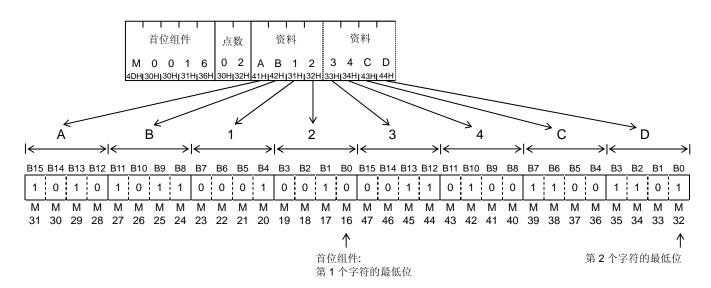
1-6 字符区域数据传输


1-6-1 位组件记忆

位组件记忆于 1 位单位中(1 点)或在字符单位中(16 点)中处理。

1) 位单位 (1点的单位)

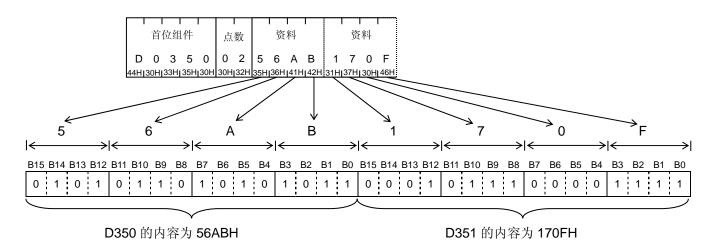
当在位单位中处理时,组件的指定号码,从指定的首位组件开始,依一增加次序,从左方开始连续表示,当 ON 时,为"1"(31H),且当 OFF 时,为"0"(30H)。


范例: 当从 M16 开始传输 5 点的 on/off 状态,

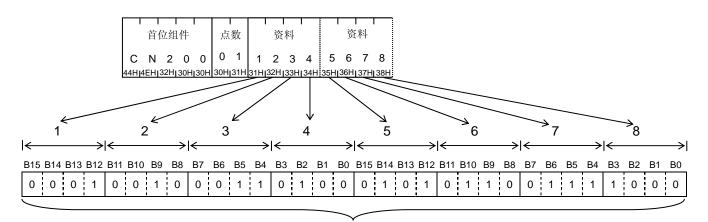
2) 字符单位 (16点的单位)

当在字符单位中处理时,每一字符(16 位,最高位为第 1 个)表示为 4 个 16 进位数字(每一个 4 位),以较高数字开始。每一数字以相称的 ASCII 字符表示。

范例: 当从 M16 传输 32 点的 on/off 状态时



1:表示 ON 0:表示 OFF


1-6-2 字符组件记忆

当处理字符组件记忆时,每一个字符表示为 4 个 16 进位数字(每一个 4 位),以较高数字开始。每一个数字以相称的 ASCII 字符来表示。

范例 1) 当显示数据缓存器 D350, D351 的内容时

范例 2) 当显示 C200* (32-bit 计数器) 的内容时, C200 的组件号码为 CN200.

C200的内容显示 12345678H

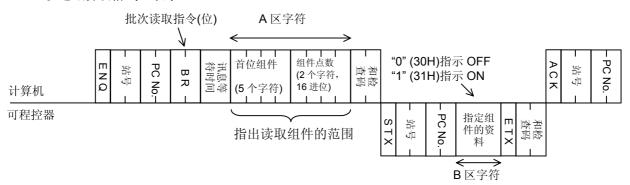
1-7 指令与装置范围

1-7-1 指令

		指令		说明	备注	
			符号 ASCII 码		远 ·知	金 社
	批次读取	位单位	BR	42H, 52H	读取位组件群(X, Y, M, S, T, C)	
		字符单位	WR	57H, 52H	读取 16 个位组件群(X, Y, M, S)	
		于初年位			读取字符组件群(D, T, C)	
	批次书写	位单位	BW	42H, 57H	书写位组件群(X, Y, M, S, T, C)	
		字符单位	WW	57H, 57H	书写 16 个位组件群(X, Y, M, S)	
组					书写字符组件群(D, T, C)	
组件记	测试	位单位	ВТ	42H, 54H	选择设定/复归单独位组件(X, Y, M, S, T, C)	
忆	(选择书 写)	字符单位	WT	57H, 54H	选择设定/复归 16 个位组件(X, Y, M, S)	
					选择书写字符组件(D, T, C*)	
	资料 登录	位单位	ВМ	42H, 4DH	设定被监视的位组件(X, Y, M, S, T, C)	
		字符单位	WM	57H, 4DH	设定被监视的字符组件(X, Y, M, S, D, T, C)	
	监视登 录数据 内容	位单位	MB	4DH, 42H	监视被登录的位组件	
		字符单元	MN	4DH, 57H	监视被登录的字符组件	
PC	遥控运转		RR	52H, 52H	遥控可程控器运转/停止	
	遥控停止		RS	52H, 53H	世代刊任招益色刊行业	
	总体的		GW 47H. 5	47H, 57H	设定/复归总体旗号状态(M8126)至所有连结的	
			GVV	4/ II, 3/ II	可程控器。	
回路测试		TT	54H, 54H	从计算机接收的字符直接传送回计算机。		

^{*} 计算机将高速计数器(32-bit)C200 至 C255 除外。

2 指令

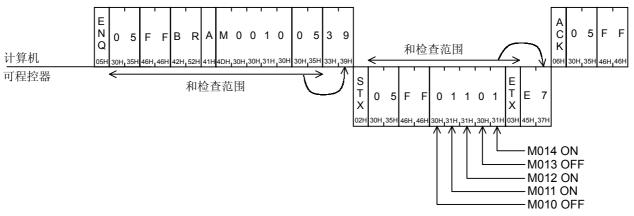

指令参考页数如下。

指令	说明	章节
BR	读取位组件。	2-1
WR	读取 16 个位组件,或读取字符组件。	2-2
BW	书写位组件。	2-3
WW	书写 16 个位组件,或书写字符组件。	2-4
ВТ	设定/复归位组件(forced on/off)。	2-5
WT	设定/复归 16 个位组件,或设定/复归字符组件,且书写资料。	2-6
ВМ	设定被监视的位组件。	2-7
WM	设定被监视的字符组件。	2-8
MB	监视被登录的位组件。	2-9
MN	监视被登录的字符组件。	2-10
RR	可程控器藉由遥控启始(RUN)。	2-11
RS	可程控器藉由遥控停止(STOP)。	2-11
GW	总体信号在所有联机的可程控器上转为 on/off。	2-12
TT	自计算机接收的字符直接返回至计算机。	2-13

2-1 位组件的批次读取 (BR 指令)

1) 指令规格

以通讯协议格式1表示

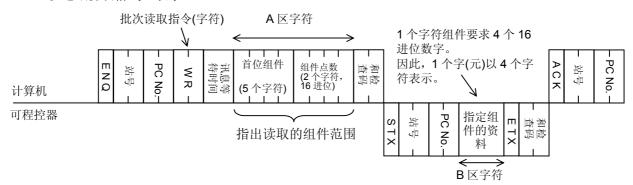


注

- ◆ 指定范围及组件点数,1≤组件点数≤64
- ◆ 站号, PC 号码,组件点数,及和检查码以16进位表示。

2) 指令范例

读取在站号 5, 从 M010 到 M014 的资料 5 点。(讯息等待时间设定至 100 ms,以"A"表示)。(假定 M010 及 M013 为 OFF 且 M11, M12 及 M14 为 ON)

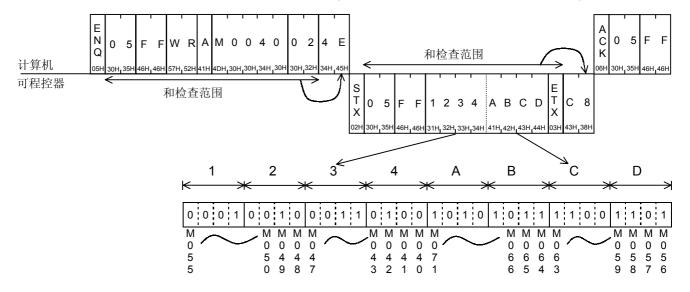

注

◆ 讯息等待时间在指定的范围内(0~150ms),以每 10ms 递增 0H 至 FH(16 进位)表示。

2-2 字符组件的批次读取 (WR 指令)

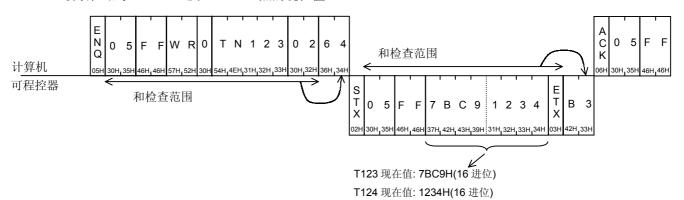
1) 指令规格

以通讯协议格式1表示

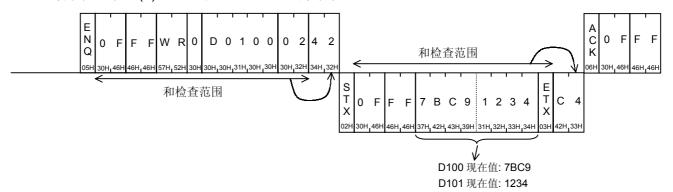

注

- ◆指定范围及组件点数(16 位字符), 1≤组件点数≤64
 - 当读取 32 位组件(C200 至 C255),被送回的数据为两位的字符。 因此,最高组件点数为 32。
- ◆ 站号、PC号码、组件点数、及和检查码以 16 进位表示。

2) 指令范例

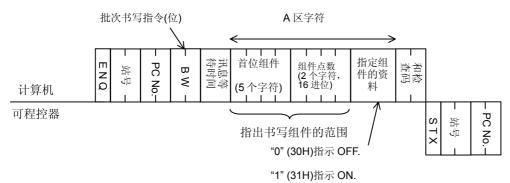

a) 范例 1

读取在站号 5, 从 M040 至 M071 的资料 32点(讯息等待时间设定至 100 ms, 以"A"表示)。


b) 范例 2

读取在站号 5, T123 及 T124, 2 点的现在值。

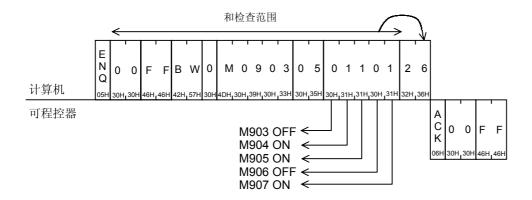
c) 范例 3


读取在站号 15(F), D100 及 D101, 2 点的现在值。

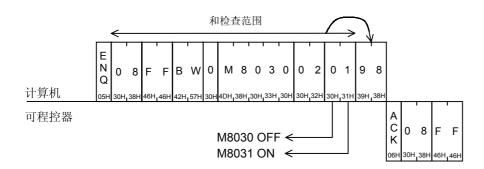
2-3 位组件的批次书写 (BW 指令)

1) 指令规格

以通讯协议格式1表示

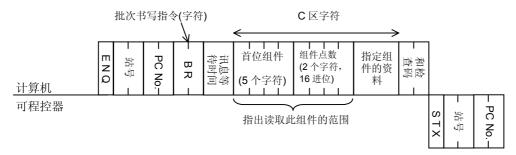


注


- ◆指定范围及组件点数,1≤组件点数≤64
- ◆站号、PC 号码、组件点数、及和检查码以 16 进位表示。

2) 指令范例

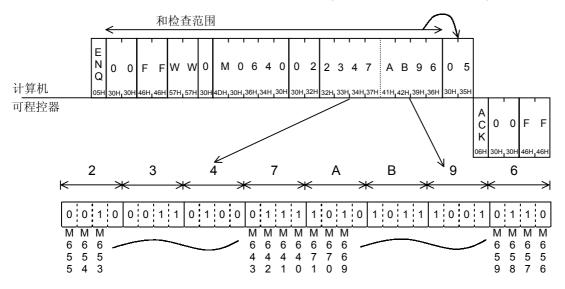
a) 书写资料进入在站号 0,从 M903 至 M907 的 5点。(讯息等待时间设定至 0 ms).


b) 书写资料进入在站号 8, 从 M8030 至 M8031 的 2点。(讯息等待时间设定至 0 ms.)

2-4 字符组件的批次书写 (WW 指令)

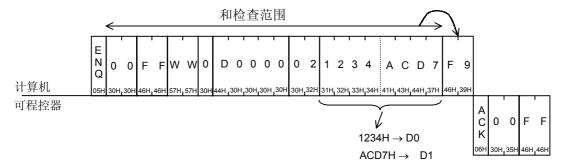
1) 指令规格

以通讯协议格式1表示

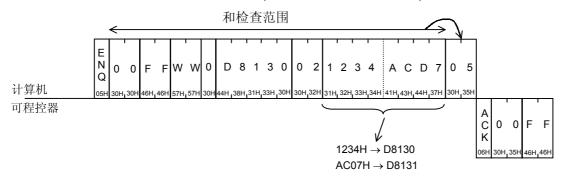

注

- ◆ 指定范围及组件点数(16 位字符), 1 ≤ 组件点数 ≤ 64 (在位组件的 8 个字符)
- ◆ 站号、PC号码、组件点数、及和检查码以 16 进位表示

2) 指令范例

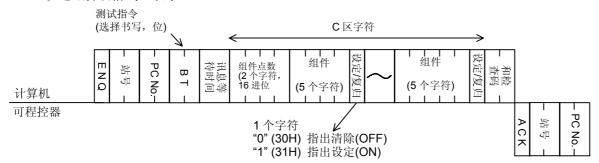

a) 范例 1

在站号 0, 书写从 M640 至 M671 的 32 点。(讯息等待时间设定至 0 ms)。


b) 范例 2

在站号 0, 书写 2 点资料 D0 及 D1。(讯息等待时间设定至 0 ms)。

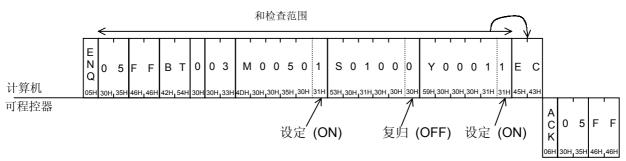
c) 范例 3


书写 2 点资料, D8130 及 D8131(讯息等待时间设定至 0 ms)。

2-5 位组件的测试 (BT 指令)

1) 指令规格

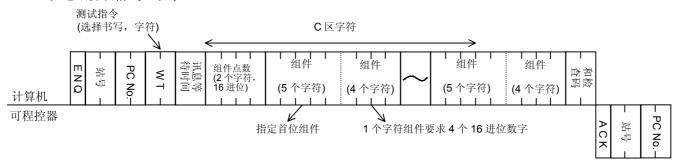
以通讯协议格式1表示



注

- ◆ 指定范围及组件点数,1≤组件点数≤20
- ◆ 站号、PC 号码、组件点数、及和检查码以 16 进位表示。

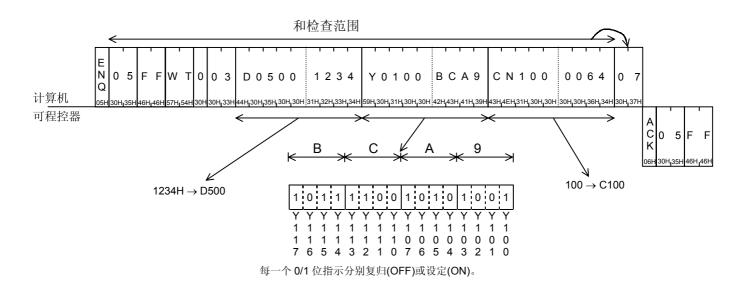
2) 指令范例


在站号 5,设定 M50 ON, S100 OFF,及 Y001 ON (讯息等待时间设定至 0 ms)。

2-6 字符组件的测试 (WT 指令)

1) 指令规格

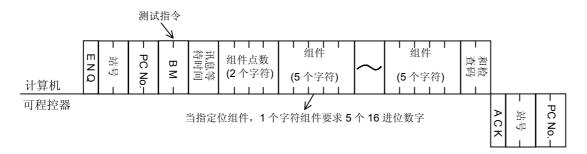
以通讯协议格式 1 表示



注

- ◆ 指定范围及组件点数(16 位字符), 1 ≤ 组件点数 ≤ 10
- ◆ 站号、PC 号码、组件点数、及和检查码以 16 进位表示
- ◆ C200 至 C255 (CN200 至 CN255)为 32 位组件,在此指令无法处理。

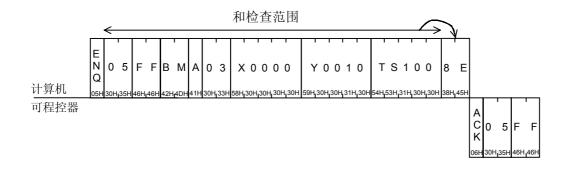
2) 指令范例


变更 D500 的内容值为 1234H, Y100 至 Y117 为 BCA9H, 及 C100 现在值为 100(讯息等待时间设定至 0 ms)。

2-7 登录被监视的位组件 (BM 指令)

1) 指令规格

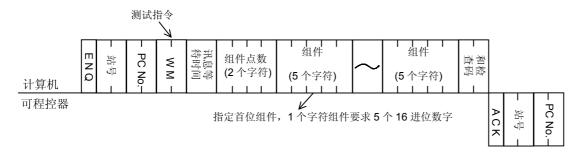
以通讯协议格式1表示



注

- ◆ 指定范围及组件点数(16 位字符), 1 ≤ 组件点数 ≤ 10
- ◆ 站号、PC 号码、组件点数、及和检查码以 16 进位表示
- ◆ C200 至 C255 (CN200 至 CN255)为 32 位组件,在此指令无法处理。

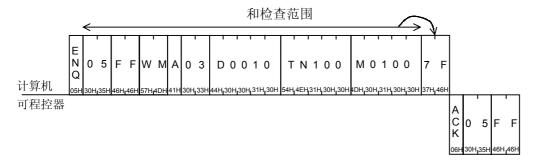
2) 指令范例


变更 D500 的内容值为 1234H, Y100 至 Y117 为 BCA9H 的现在值,在站号 5, C100 现在值为(讯息等待时间设定至 0 ms)。

2-8 登录被监视的字符组件 (WM 指令)

1) 指令规格

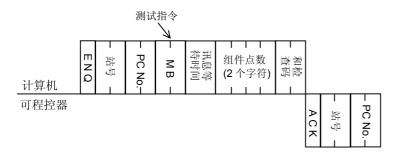
以通讯协议格式1表示



注

- ◆ 指定范围及组件点数(16 位字符), 1 ≤ 组件点数 ≤ 10
- ◆ 站号、PC 号码、组件点数、及和检查码以 16 进位表示
- ◆ C200 至 C255 (CN200 至 CN255)为 32 位组件,在此指令无法处理。

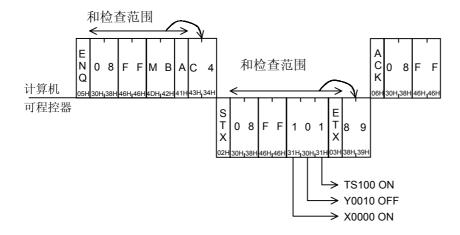
2) 指令范例


变更 D500 的内容值为 1234H, Y100 至 Y117 为 BCA9H, 在站号 5, C100 现在值为 100 (讯息等待时间设定至 0 ms)。

2-9 监视被登录的位组件 (MB 指令)

1) 指令规格

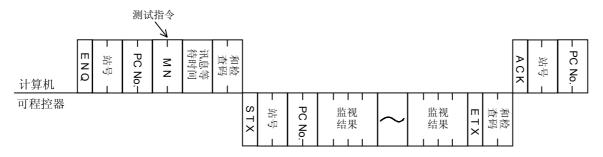
以通讯协议格式1表示



注

- ◆ 指定范围及组件点数(16 位字符), 1 ≤ 组件点数 ≤ 10
- ◆ 站号、PC 号码、组件点数、及和检查码以 16 进位表示

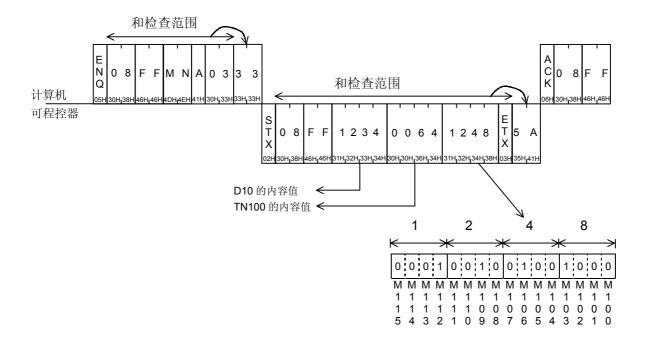
2) 指令范例


变更 D500 的内容值为 1234H, Y100 至 Y117 为 BCA9H, 在站号 8, C100 现在值为 100 (讯息等待时间设定至 0 ms)。

2-10 监视被登录的字符组件 (MN 指令)

1) 指令规格

以通讯协议格式1表示



注

- ◆ 指定范围及组件点数(16 位字符), 1 ≤ 组件点数 ≤ 10
- ◆ 站号、PC 号码、组件点数、及和检查码以 16 进位表示

2) 指令范例

变更 D500 的内容值为 1234H, Y100 至 Y117 为 BCA9H, 在站号 8, C100 现在值为 100 (讯息等待时间设定至 0 ms)。

2-11 遥控 RUN/STOP (RR, RS 指令)

2-11-1 遥控 RUN/STOP 的运转

当从计算机要求遥控 RUN/STOP,可程控器强迫变更运转模式。

◆ 遥控 RUN

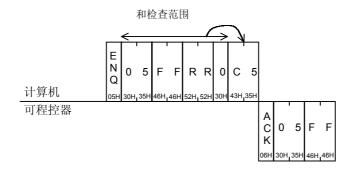
当要求遥控 RUN (RR 指令)时, M8035 及 M8036 被设定 ON;可程控器转为 RUN 状态。

◆ 遥控 STOP

当要求遥控 STOP (RS 指令)时,M8037 被设定 ON,复归 M8035 及 M8036 至 OFF 且可程控器转为 STOP 状态。

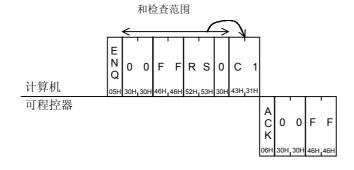
2-11-2 控制规格及遥控 RUN/STOP 的范例

1) 控制规格


以通讯协议格式1表示

可程控器遥控运转指令: "RR" 可程控器遥控停止指令: "RS" RR 讯息等 待时间 Ш 岩岩 РС 和有检码码 N Q 或 Z RS 计算机 可程控器 РС 是招 ဂ $\frac{2}{6}$

2) 指令范例

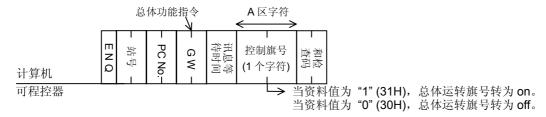

a) 范例 1

在站号 5, 执行遥控 RUN(讯息等待时间设定至 0 ms)。

b) 范例 2

在站号 0, 执行遥控 STOP(讯息等待时间设定至 0 ms)。

2-12 总体功能 (GW 指令)

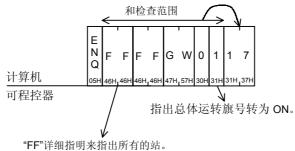

此功能为开启及关闭在多站联机中,所有站的总体运转旗号 M8126。 此功能可使用于初始、复归或可程控器站的同时启始/停止。

2-12-1 控制规格及总体功能的范例

- ◆ 在控制通讯协议中, 站号指定必须表明所有的站, 因此指定如 FFH ("FF")。
- ◆ 可程控器对此指令没有任何回复产生。

1) 指令规格

以通讯协议格式1表示

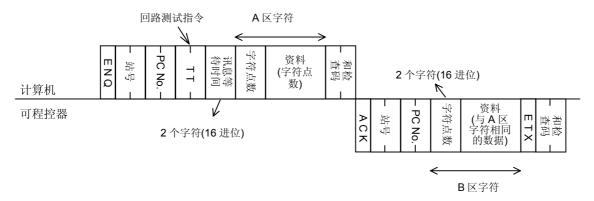


注

◆ 站号、PC号码、组件点数、及和检查码以 16 进位表示

2) 指令范例

开启所有可程控器的总体运转旗号 M8126。

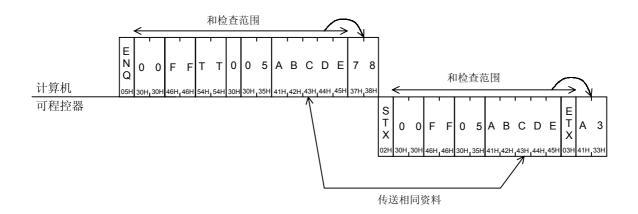

"FF"详细指明来指出所有的站。 对于特殊的站,指出在"00"至"0F"之间的站号。

2-13 回路测试

回路测式为测试在计算机与可程控器之间运转是否正常的功能。

1) 指令规格

以通讯协议格式1表示



注

- ◆ 指定字符点数范围, 1 ≤ 字符点数 ≤ 128
- ◆ 站号、PC 号码、组件点数、及和检查码以 16 进位表示。

2) 指令范例

在站号 0,以资料"ABCDE"测试回路(讯息等待时间设定至 0 ms)

附录A

ASCII 码列表

表格:ASCII 码列表

16 进位码	0	1	2	3	4	5	6	7
0		DLE	SP	0	@	Р	•	р
1	SOH	DC1	!	1	Α	Q	а	q
2	STX	DC2	u	2	В	R	b	r
3	ETX	DC3	#	3	С	S	С	S
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	Е	U	е	u
6	ACK	SYN	&	6	F	V	f	V
7	BEL	ETB		7	G	W	g	w
8	BS	CAN	(8	Н	Х	h	х
9	HT	EM)	9	I	Y	i	у
Α	LF	SUB	*	:	J	Z	j	Z
В	VT	ESC	+	•	K	[k	{
С	FF	FS	,	<	L	\	I	
D	CR	GS	-	=	M]	m	}
Е	SO	RS	•	>	N	۸	n	~
F	SI	US	1	?	0		0	DEL

力扬可编程控制器

力扬电机工业有限公司

LIYAN ELECTRIC INDUSTRIAL LTD.

TEL: 886 - 4 - 25613700 FAX: 886 - 4 - 25613408

Website: http://www.liyanplc.com E - mail: twliyan@ms16.hinet.net